Yeast cells can access distinct quiescent states
نویسندگان
چکیده
منابع مشابه
Yeast cells can access distinct quiescent states.
We conducted a phenotypic, transcriptional, metabolic, and genetic analysis of quiescence in yeast induced by starvation of prototrophic cells for one of three essential nutrients (glucose, nitrogen, or phosphate) and compared those results with those obtained with cells growing slowly due to nutrient limitation. These studies address two related questions: (1) Is quiescence a state distinct fr...
متن کاملProtein kinases are associated with multiple, distinct cytoplasmic granules in quiescent yeast cells.
The cytoplasm of the eukaryotic cell is subdivided into distinct functional domains by the presence of a variety of membrane-bound organelles. The remaining aqueous space may be further partitioned by the regulated assembly of discrete ribonucleoprotein (RNP) complexes that contain particular proteins and messenger RNAs. These RNP granules are conserved structures whose importance is highlighte...
متن کاملReversible cytoplasmic localization of the proteasome in quiescent yeast cells
The 26S proteasome is responsible for the controlled proteolysis of a vast number of proteins, including crucial cell cycle regulators. Accordingly, in Saccharomyces cerevisiae, 26S proteasome function is mandatory for cell cycle progression. In budding yeast, the 26S proteasome is assembled in the nucleus, where it is localized throughout the cell cycle. We report that upon cell entry into qui...
متن کاملYeast cells can enter a quiescent state through G1, S, G2, or M phase of the cell cycle.
We have examined the ability of the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae to enter a quiescent state through G1, S, G2, or M phase of the cell cycle. We monitored entry to a quiescent state by measuring two well known properties of quiescent cells, i.e., long-term viability and a dramatic increase in resistance to thermal heat shock relative to cycling cells. For this pu...
متن کاملIsolation of quiescent and nonquiescent cells from yeast stationary-phase cultures
Quiescence is the most common and, arguably, most poorly understood cell cycle state. This is in part because pure populations of quiescent cells are typically difficult to isolate. We report the isolation and characterization of quiescent and nonquiescent cells from stationary-phase (SP) yeast cultures by density-gradient centrifugation. Quiescent cells are dense, unbudded daughter cells forme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genes & Development
سال: 2011
ISSN: 0890-9369
DOI: 10.1101/gad.2011311